

TF-Luna 使用说明书

目录

1	修订历	订历史7					
2	注意事	项	7				
	2.1	关于文档	7				
	2.2	产品使用	7				
	2.3	产品失效情况	7				
3	原理及	关键参数	8				
	3.1	测距原理	8				
	3.2	关键特性参数	8				
	3.3	重复精度	8				
	3.4	测距特性	9				
4	外观与:	结构	10				
	4.1	产品外观	10				
5	电气特	性	10				
6	功能描	述	11				
	6.1	线序说明	11				
	6.2	串口通信	11				
	6.3	I2C 通信	12				
	6.4	数据输出	13				
	6.5	连续测距模式	13				

6.6		指令触发模式	14	
	6.7	开关量模式	14	
	6.8	Amp 阈值设置	14	
	6.9	距离限制设置	15	
	6.10) 低功耗模式	15	
	6.11	其他功能	16	
7	快速》	则试步骤	16	
	7.1	产品测试所需工具	16	
	7.2	固件更新	1	8
	7.3	附录一串口输出格式		19
	1.	9 字节 cm	19	
	2.	PIX	. 19	
	3.	9 字节 mm	19	
	4.	带 32bit 时间戳	19	
	5.	ID0 输出	19	
	6.	8 字节 cm 输出	20	
	7.	附录二串口通信软件协议		. 21
	1.	获取版本号 ID_GET_VERSION=0x01	21	
	2.	系统软件复位 ID_SOFT_RESET=0x02		2´
	3.	设置输出频率 ID SAMPLE FREQ=0x03	21	

4.	单次触发指令 ID_SAMPLE_TRIG=0x04	22
5.	设置输出格式 ID_OUTPUT_FORMAT=0x05	. 22
6.	设置串口波特率 ID_BAUD_RATE=0x06	22
7.	输出开关 ID_OUTPUT_EN=0x07	23
8.	校验和开关 ID_FRAME_CHECKSUM_EN=0x08	23
9.	修改 I2C 从机地址 ID_I2C_SLAVE_ADDR=0x0B	23
10.	恢复出厂设置 ID_RESTORE_DEFAULT=0x10	24
11.	保存当前设置 ID_SAVE_SETTINGS=0x11	24
12.	读取生产条码 ID_READ_MANU_BIN=0x12	24
13.	获取完整版本号 ID_GET_FULL_VERSION=0x14	25
14.	设置 AMP 踢点阈值 ID_AMP_THRESHOLD=0x22	25
15.	时间戳同步 ID_TIMESTAMP_SYNC =0x31	25
16.	低功耗模式 ID_LOW_CONSUMPTION=0x35	26
17.	设置距离限制 ID_DIST_LIMIT=0x3A	. 26
18.	设置开关量输出模式 ID_ON_OFF_MODE=0x3B	. 26
19.	设置低采样率模式 ID_LOW_SAMPLE_RATE=0x3E	27
20.	读取指定的雷达配置 ID_GET_CONFIG_PARA=0x3F	27
附書	三 12€ 客左哭孙耒	2

1修订历史

版本	修订内容	发布日期
A00	初始版本	2020.1.15
A03	1. 删除部分章节。	2020.3.15
	2. 更新外部尺寸。	
	3. 完善功能描述	
	4. 增加 I2C 接口说明。	
	5. 更新供电电压范围: 3.7V-5.2V。	

2 注意事项

2.1 关于文档

- 本说明书提供产品使用过程中必需的各项信息。
- 请在使用本产品前认真阅读本说明书,并确保您已完全理解说明书内容。

2.2 产品使用

- 本产品只能由合格的专业人员维修,且只能使用原厂备件,以保证产品的性能和安全性。
- 产品本身无极性保护和过电压保护,请按说明书内容正确接线和供电。
- 产品的工作温度为-10℃~60℃,请勿在此温度范围外使用,以免产生风险。
- 产品的存储温度为 -20℃~75℃,请勿在此温度范围外存储,以免产生风险。
- 请勿打开外壳进行本使用说明以外的装配或保养,以免影响产品防护性能,造成产品 失效。

2.3 产品失效情况

- 产品在探测高反射率物体,如镜面、光滑地砖、平静的牛奶液面时,会有失效的风险。
- 当产品与被测目标之间有透明物体,如玻璃、水时,会有失效的风险。
- 当产品发射接收窗口被污物覆盖时,会有失效的风险,请保持窗口干净。
- 由于产品线路板直接裸露,请勿直接用手触碰线路板。如有需求,请佩戴静电手环或 防静电手套。否则产品会有失效的风险,具体表现为产品无法正常工作。

3 原理及关键参数

3.1 测距原理

TF-Luna 基于 TOF (Time of Flight) 即飞行时间原理。具体为产品周期性的向外发出近红外光调制波,调制波遇物体后反射。产品通过测量调制波往返相位差,得到飞行时间,再计算出产品与被测目标之间的相对距离,如图 1 所示。

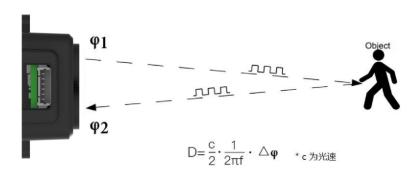


图 1 飞行时间原理示意图

3.2 关键特性参数

表 1TF-Luna 关键特性参数指标

参数名称	参数值
测量范围	0.2m~8m [©]
	±6cm@ (0.2-3m)
准确度	±2%@ (3m-8m)
默认距离单位	cm
距离分辨率	1cm
信号接收角	2°©
输出频率	1~250Hz(可调)◎

- ① 漫反射白板 (90%反射率) 条件下所能达到的测距范围。
- ② 该角度为理论值,实际角度值存在一定偏差。
- ③ 输出帧率默认值为 100Hz, 支持自定义配置, 可配置值为 500/n (n 为正整数)。

3.3 重复精度

TF-Luna 的测距重复精度与测量时的信号强度值(Amp)及输出帧率相关,Amp 越大,重复精度越高,输出频率越低,重复精度越高。以测距 1σ 标准差表征测距重复精度,下面给出了 100Hz 输出帧率时,不同测试条件下的 1σ 标准差,仅供参考,实际标准差可能受使用环境影响。

表 2 不同 Amp 下的测距标准差参考值

Amp	100	200	400	1000	≥2000
Std	3cm	3cm	2cm	1cm	0.5cm

表 3 90%反射率漫反射目标不同距离下的测距标准差参考值

距离	200 cm	400cm	600cm	800cm
Std	0.5cm	1cm	1.5cm	2cm

3.4 测距特性

TF-Luna 产品经过光路与算法优化,已最大程度减小外界环境对测距性能的影响。

TF-Luna 的测距盲区,为 0-20cm,该范围内的数据不可信。

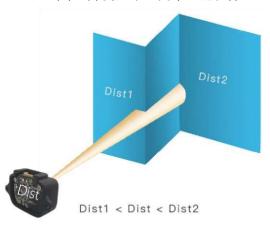
对黑色(10%反射率)目标的探测能力,测量范围为 0.2-2.5m。

对白色 (90%反射率) 目标的探测能力, 测量范围为 0.2-8m。

只有当『被测目标边长』大于等于『有效测距边长』时,数据才稳定可靠。『有效测距边长』 由视场角决定(视场角一般是指接收角和发射角中的较小者),计算公式为: d = 2 * D·tanβ

其中, d 表示有效测距边长, D 表示探测距离, β 为 TF-Luna 的接收半角 1°, 一般的有效测距边长与探测距离的对应关系, 见表 3:

表 3 测距距离对应的被测目标有效边长


探测距离	1m	2m	3m	4m	5m	6m	7m	8m
有效边长	3.5cm	7cm	10.5cm	14cm	17.5cm	21cm	24.5cm	28cm

当被测物体边长不满足有效测距边长时,如图4所示,TF-Luna输出测量值(Dist)会出现异常。使用过程中如果要求精度较高,应尽量避免此类情况,减小测量误差。

http://www.dfrobot.com.cn

图 4 探测两个距离不一的物体

4 外观与结构

4.1 产品外观

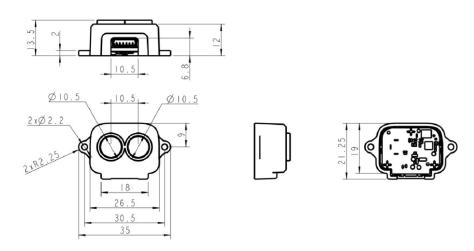


图 5 TF-Luna 产品外观及尺寸图

5 电气特性

表 4 TF-Luna 主要电气参数

参数名称	参数值
输入电压	3.7V-5.2V
平均电流	≤70mA
平均电流	≤70mA

峰值电流	150mA		
功耗	≤350mW		
通信电平	LVTTL (3.3V)		

本产品无过压保护或者极性保护,请确保接线正常,输入电压在指定范围内。

6 功能描述

6.1 线序说明

图 6 TF-Luna 引脚顺序示意图

表 5 引脚功能及连接说明

编 号	功能	说明		
1	+5V	电源正极		
2	RXD/SDA	接收/数据		
3	TXD/SCL	发送/时钟		
4	GND	电源地		
5	接口配置输入	接地: 启动为 I2C 模式悬空或 者接 3.3V: 启动为串口模式		
6	复用输出	开关量模式功能: 开关量输出 I2C 模式且开关量模式关闭: 数据准备好指示		

6.2 串口通信

引脚 5 悬空或者接 3.3V 时, TF-Luna 启动为串口通信模式, 引脚 2 为串口接收 RXD, 引脚 3 为串口发送 TXD。串口通信硬件协议为: 数据位 8bit, 停止位 1bit, 无奇偶校验, 默认波特率

115200bps。

串口通信软件协议数据帧格式如下:

字节	0	1	2	3~Len-2	Len-1
t#: //	Hoad(OvEA)	Lon	ID	Payload	Chacksum
描述	Head(0x5A)	Len	ID	Payload	Checksum

Head: 帧头, 固定为 0x5A。

Len: 包含帧头到 Check_sum 的所有字节的长度,单位为字节,范围 4~255。

ID: 指示如何解析 Payload 数据。

Payload:数据段,根据ID进行解析,可能没有数据段。

Checksum: 对从 Head 到 Payload 的所有字节进行求和计算, 取低 8 位。

串口通信软件协议见附录二串口通信软件协议。

注意: TF-Luna 内部对下行数据帧默认没有开启校验和检查,即下行帧尾的 Checksum 可以填充任意值。从 TF-Luna 上行的数据帧包含了正确的 Checksum 值。如果用户对通信可靠性有需求,可以通过附录二串口通信软件协议中的"校验和开关ID FRAME CHECKSUM EN=0x08"指令开启校验和检查功能。

配置指令下发后立即生效,但不会被保存,如需掉电保存,需要追加发送"保存当前设置ID SAVE SETTINGS=0x11"指令: 5A 04 11 00。

6.3 I2C 通信

引脚 5 接地时,TF-Luna 启动为 I2C 通信模式,引脚 2 为数据线 SDA,引脚 3 为时钟线 SCL,TF-Luna 做为 I2C 从机,默认从机地址为 0x10,支持最高 400kbps 的时钟频率。I2C 寄存器列表见附录三 I2C 寄存器列表。

写寄存器时序:

Start	Slave	W	Ack	RegisterAddr	Ack	Data1	Ack	•••	DataN	Ack	Stop
	Addr										

读寄存器时序:

Start Slave R Ack Data1 Ack DataN Nack Stop		Start	Slave		W	Ack	R	egiste	erAd	dr	Ack	Sto	р	
			Addr											
	Sta			R	Ack	Data	a1	Ack	•••	Di	ataN	Nack	St	юр

http://www.dfrobot.com.cn

其中读寄存器时序中,主机可以不产生第一个 Stop 信号,直接产生第二个 Start 信号。最后一个 Nack 也可以是 Ack 信号。

在连续测距工作模式下, 主机必须根据 TF-Luna 的引脚 6 产生的数据准备好信号做为同步信号, 在指定的时序内发起读数据操作, 否则可能在数据寄存器更新期间进行读取, 导致偶现数据异常的问题。多机总线模式下, 建议使用指令触发模式工作。

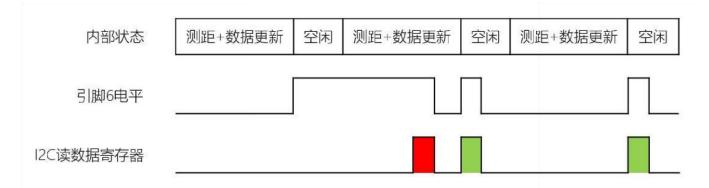


图 7I2C 读数据寄存器示意图

数据更新完成时,引脚 6 切换为高电平,读寄存器操作(任意寄存器)完成时,引脚 6 切换为低电平。连续工作模式下,I2C 主机需要在读到引脚为高电平后,立即读取数据寄存器。上面时序中,第一次读取的数据不可靠,后面两次是正确的读取时机。

向 I2C 寄存器写入配置值后,不会立即生效,断电也不会保存,向地址 0x20 写入 0x01 后将保存当前的寄存器值,重启后生效。如果写入的配置值无效,寄存器值将保持为有效值。一般情况下,只可写的寄存器地址,写入后立即生效。

6.4 数据输出

TF-Luna 主要输出以下几项数据:

- 测距值 (Dist): 默认单位 cm。
- 信号强度 (Amp): 当 Amp=0xFFFF 时,表示过曝;当 Amp<100 时,信号过低。信号过曝或过低时,距离值都不可信。

http://www.dfrobot.com.cn

● 芯片温度 (Temp): 串口输出的温度值换算成摄氏度的算式为: Temp/8-256。注意, Temp 是芯片温度, 不是环境温度, 通常情况下, 芯片温度比环境温度高约20℃。

TF-Luna 支持多种串口输出格式,请参考附录一串口输出格式,出厂默认为"9字节 cm"格式。

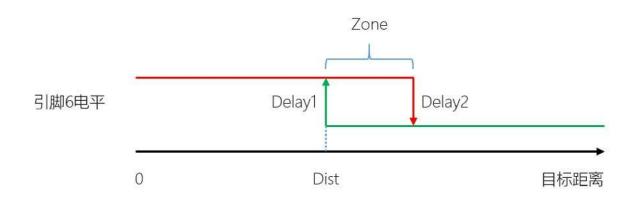
用户可以通过"设置输出格式 ID OUTPUT FORMAT=0x05"指令修改输出格式。

6.5 连续测距模式

TF-Luna 内部以 500Hz 的频率进行测距,根据用户配置的输出频率,做多次平均后输出。如出厂默认配置的 100Hz 输出频率,TF-Luna 内部将连续 5 个测距结果进行求平均运算后输出。因此输出频率越低,平均次数越多,数据波动性越小。TF-Luna 支持的最高输出频率为 250Hz,而且仅支持 500/n 的频率值,其中 n 的取值范围是[2,500],即用户可配置的输出频率为: 250,166,125,100,…2,1等值。用户可以通过"设置输出频率 ID_SAMPLE_FREQ=0x03"指令修改输出频率。

6.6 指令触发模式

当通过"设置输出频率 ID_SAMPLE_FREQ=0x03"指令设置输出频率为 0 时, TF-Luna 进入指令触发模式,此时雷达不再主动测距,每收到一次"单次触发指令ID_SAMPLE_TRIG=0x04 (" 5A 04


04 00), 测距并输出一次。

6.7 开关量模式

当用户只关心某一距离范围内是否存在目标时,可以通过"举例:

最小输出距离 20cm,最大输出距离 500cm,超出距离限制后,输出限制端点值[5A 093A14 00

F4 0100 00]

设置开关量输出模式 ID_ON_OFF_MODE=0x3B"指令使能 TF-Luna 的开关量模式。该模式下,探测信息由引脚 6 的高低电平表示。下图以近高远低模式为例,说明开关量模式的工作方式。

图 8 近高远低的开关量模式

当 Zone 设置为 0,目标距离小于 Dist 时引脚 6 输出高电平,目标距离大于 Dist 时引脚 6 输出低电平。如果目标距离恰好在 Dist 处,可能由于测距的波动性,导致引脚 6 电平频繁高低跳变。可以通过设置 Zone,构成一个滞回区间,避免该问题。当 Zone 不为 0,目标距离大于 Dist+Zone 时才会触发高电平到低电平的跳变,目标距离小于 Dist 时才会触发低电平到高电平的跳变。

开关量模式支持延时设置, 当 Delay1 和 Delay2 不为 0, 目标距离满足跳变条件时不会立即触发触引脚 6 的电平跳变, 只有持续 Delay1 或 Delay2 ms 时间始终满足跳变条件, 才会真正触发引脚 6 的电平跳变。

注意,默认设置下,当信号强度小于阈值时,测距值被赋值为 0,当用户使用开关量模式时,如果远距离没有目标,信号强度小于阈值,使得距离值为 0,导致引脚 6 的电平与近距有目标一

致。此时可以参考"6.8Amp 阈值设置"将信号强度小于阈值时的距离值,设置为大于Dist+Zone 的数值。

6.8 Amp 阈值设置

当信号强度过小时,距离解算结果可能出错,因此 TF-Luna 出厂默认配置下,当 Amp<100 时,距离强制被赋值为 0。当用户对 TF-Luna 的距离输出值有更低或更高的要求时,可以通过"举例:

指令 [5A 04 14 00]

设置 AMP 踢点阈值 ID_AMP_THRESHOLD=0x22" 适当调整 Amp 阈值。注意,实际设置的 Amp 阈值为指令中数值的 10 倍。

6.9 距离限制设置

TF-Luna 出厂默认配置下,最小输出 0cm,最大输出 800cm。用户可以根据实际需求通过"举例:

低功耗模式 10Hz 输出 [5A 06 35 0A 00 00]

设置距离限制 ID_DIST_LIMIT=0x3A"指令进行设置。

注意,超出[20cm, 800cm]的量程范围的距离值可能不可靠。

6.10 低功耗模式

TF-Luna 的功耗受两个因素决定:光源驱动电流大小、发光占空比。

TF-Luna 通过自适应调节光源驱动电流,达到适应不同距离、不同反射率目标的大动态范围的目的。返回雷达的信号强度过高时,自动切换到低档位电流工作,相反,信号强度过低时,自动切换到高档位电流工作。电流档位越高,功耗越大。

参考 "6.5 连续测距模式",连续测距模式下,TF-Luna 始终以最高占空比发光,不随输出 频率而改变。因此当 TF-Luna 为连续工作模式,电流档位处于最高档时,功耗最大,5V 供电时,功耗约 350mW。

用户可以通过两种方式改变 TF-Luna 的发光占空比。第一种是使用指令触发模式,TF-Luna 在没有收到测距指令时不发光,此时功耗约 42.5mW (5V 供电),实际功耗由指令触发的频率确定。另一种方式是使能 TF-Luna 提供的低功耗模式,该模式的内部工作机制与指令触发模式相同,只是由 TF-Luna内部自动产生触发信号。用户可以通过"低功耗模式

ID LOW CONSUMPTION=0x35"指令设置 TF-Luna 进入低功耗模式。

为保证 TF-Luna 内部工作时序,低功耗模式最大输出频率为 10Hz。下面表格列出了 5V 供电时,低功耗模式不同工作频率下平均功耗的参考值,实际功耗可能受环境温度或供电电压的影响,与参考值存在差异。

低功耗模式工作频率	平均工作电流(mA)	平均功耗(mW)
1Hz	8.85	44.25
2Hz	9.2	46
3Hz	9.55	47.75
4Hz	9.9	49.5
5Hz	10.25	51.25
6Hz	10.6	53
7Hz	10.95	54.75
8Hz	11.3	56.5
9Hz	11.65	58.25
10Hz	12	60

6.11 其他功能

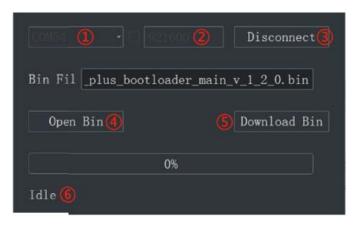
获取版本号、系统软件复位、设置串口波特率等其他功能,用户可以根据"附录二串口通信软件协议"的描述使用。

7 快速测试步骤

7.1 测试步骤

(1) 上位机测试软件下载

注意:解压上位机软件前请关闭杀毒软件,避免上位机软件中的文件被当成病毒删除,上位机目前仅支持在 Windows 系统上运行。


(2) 设备连接

如上图所示,连接『TF-Luna』、『TTL - USB 转接板』和『USB 线』,确保无松动,再将『USB 线』与『电脑』连接。

(3) 上位机连接与读数

如图,打开 TF 上位机,选择『①TF-Luna』,并选择自动识别的占用串口(这里是『COM9』)。

然后,点击『CONNECT』进行上位机连接。连接成功后,右侧『④ TIME LINE CHART』区域会出现连续输出的数据图像,下方『⑥ REAL TIME DATA』区实时显示当前测试距离 (Dist)、每秒有效数据量 (Effective Points) 和信号强度 (Strength)。

http://www.dfrobot.com.cn

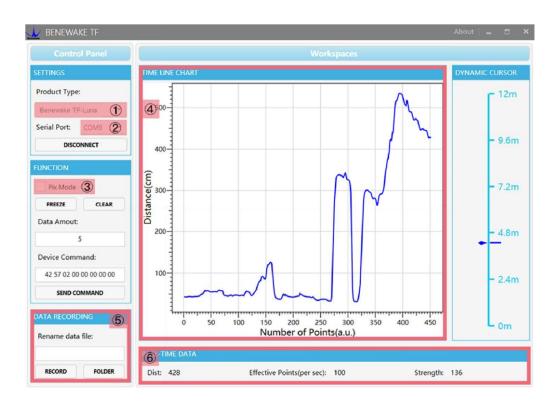


图 6 上位机界面及显示

说明:

- a) 如果『④ TIME LINE CHART』区没有数据,请检查连接和线序,TF-Luna 上电成功,正面看发射透镜内会有微弱的红光。
- b) 如果 TF-Luna 是 Pixhawk 格式输出,需先勾选『③ Pix Mode』,『④ TIME LINE CHART』区才会正常输出数据图像。勾选 Pix Mode 后,距离单位变为 m。
- c) 距离输出 Dist 值,跟据输出单位不同会有所区别,默认单位为 cm。如果通过指令修改 TF-Luna 的距离单位为 mm,上位机并不能区分,『④ TIME LINE CHART』单位仍为 cm。例如,TF-Luna 实际测量距离为 1m,以 mm 为单位则输出 1000,通过该上位机读取的数值为 1000,但上位机上的单位不会变化,仍显示 cm。

8 固件更新

TF-Luna 支持固件更新,当用户产品不能满足当前的使用需求,且官方有相应的固件更新后,用户可通过"TF-Luna 远程升级上位机"更新产品固件。请联系技术支持人员获取固件更新上位机。

TF-Luna 固件更新所需要的工具与快速测试步骤中描述的基本一致,同样需要 TTL-USB 转接板建立 TF-Luna 与电脑的连接。

连接好后,打开 TF-Luna 固件更新上位机,选择合适的端口,此处为『①COM8』。在『②115200』处输入正确的波特率,点击『③ CONNECT』,建立 TF-Luna 与上位机通信;点击『④ Open Bin』选择需要更新的固件文件,上方文本框中会显示该固件文件地址。然后点击『⑤ Download Bin』即可完成更新。『⑥』会显示固件更新信息。

注意, 固件更新上位机和固件文件需要放在纯英文路径下。

附录一串口输出格式

1.9 字节 cm

支持此协议的最低固件版本: V0.0.5。

字节	0	1	2	3	4	5	6	7	8
描述	0x59	0x59	Dist_L	Dist_H	Amp_L	Amp_H	Temp_L	Temp_H	Check_sum

Dist: cm

过曝时数值为65535。

Amp: 信号强度, 小于 100 时测距结果不可靠,

Temp: Temp / $8 - 256 = ^{\circ}C$

2. PIX 支持此协议的最低固件版本: V0.0.5。

 $X.YZ\r\n$

ASCII 码格式,单位为米,保留两位小数。

3.9 字节 mm 支持此协议的最低固件版

本: V0.0.5。

字节	0	1	2	3	4	5	6	7	8
描述	0x59	0x59	Dist_L	Dist_H	Amp_L	Amp_H	Temp_L	Temp_H	Check_sum

Dist: mm

Amp: 信号强度,小于 100 时测距结果不可靠,过曝时数值为 65535。

Temp: Temp / $8 - 256 = ^{\circ}C$

4. 带 32bit 时间戳

支持此协议的最低固件版本: V0.0.5。

字节	0	1	2	3	4	5	6-9	10
描述	0x59	0x59	Dist_L	Dist_H	Amp_L	Amp_H	Timestamp	Check_sum

Dist: cm

Amp: 信号强度,小于 100 时测距结果不可靠,过曝时数值为 65535。

http://www.dfrobot.com.cn

Timestamp: 时间戳, 小端格式, 单位 ms

5. IDO 输出

支持此协议的最低固件版本: V0.0.5。

字节	0	1	2	3	4	5	6	7-10	11
描述	0x5A	Len	0x00	Dist_L	Dist_H	Amp_L	Amp_H	Timestamp	Check_sum

Dist: cm

Amp: 信号强度,小于 100 时测距结果不可靠,过曝时数值为 65535。

Timestamp: 时间戳, 小端格式, 单位 ms

6.8 字节 cm 输出

支持此协议的最低固件版本: V0.0.5。

字节	0	1	2	3	4-7
描述	Dist_L	Dist_H	Amp_L	Amp_H	Timestamp

Dist: cm

Amp: 信号强度,小于 100 时测距结果不可靠,过曝时数值为 65535。

Timestamp: 时间戳, 小端格式, 单位 ms

附录二串口通信软件协议

1. 获取版本号 ID_GET_VERSION=0x01

支持此协议的最低固件版本: V0.0.5。下

行:

字节	0	1	2	Len-1
描述	Head(0x5A)	Len	ID	Check_sum

上行:

字节	0	1	2	3~5	Len-1
描述	Head(0x5A)	Len	ID	Version	Check_sum

Version: 例如, 第3、4、5字节分别为112、50、9, 表示版本号9.50.112。

举例:

指令 [5A 04 01 00]

2. 系统软件复位 ID_SOFT_RESET=0x02

支持此协议的最低固件版本: V0.0.5。下

行

字节	0	1	2	Len-1
描述	Head(0x5A)	Len	ID	Check_sum

上行

字节	0	1	2	3	Len-1
描述	Head(0x5A)	Len	ID	Status	Check_sum

Status: 0 (成功); 非 0 (失败)。说明:被修改但未执行"保存当前设置"操作的配置项,将被复原到初始状态。

举例:

指令 [5A 04 02 00]

3. 设置输出频率 ID_SAMPLE_FREQ=0x03

支持此协议的最低固件版本: V0.0.5。下

行

字节	0	1	2	3~4	Len-1
描述	Head(0x5A)	Len	ID	Freq	Check_sum
默认值				100	

Freq: 工作频率, 0 (指令单次触发模式), >0 (设定的工作频率)。上行

字节	0	1	2	3~4	Len-1
描述	Head(0x5A)	Len	ID	Freq	Check_sum

Freq: 雷达实际实现的工作频率。

举例:

10Hz [5A 06 03 0A 00 00]

250Hz [5A 06 03 FA 00 00]

4. 单次触发指令 ID_SAMPLE_TRIG=0x04

支持此协议的最低固件版本: V0.0.5。下

行

字节	0	1	2	Len-1
描述	Head(0x5A)	Len	ID	Check_sum

上行数据帧

举例:

指令 [5A 04 04 00]

5. 设置输出格式 ID_OUTPUT_FORMAT=0x05

支持此协议的最低固件版本: V0.0.5。下

行

字节	0	1	2	3	Len-1
描述	Head(0x5A)	Len	ID	Format	Check_sum
默认值				0x01	

Format: 0x01 (9 字节 cm 输出), 0x02 (PIX 输出), 0x06 (9 字节 mm 输出), 0x07 (带 32bit 时间戳), 0x08 http://www.dfrobot.com.cn

(ID0 输出), 0x09 (8 字节 cm 输出) 上

行

字节	0	1	2	3	Len-1
描述	Head(0x5A)	Len	ID	Format	Check_sum

Format: 雷达实际配置成的输出格式。

举例:

PIX 输出[5A 05 05 02 00]

6. 设置串口波特率 ID BAUD RATE=0x06

支持此协议的最低固件版本: V0.0.5。下

行

字节	0	1	2	3~6	Len-1
描述	Head(0x5A)	Len	ID	Baudrate	Check_sum
默认值				115200	

上行

字节	0	1	2	3~6	Len-1
描述	Head(0x5A)	Len	ID	Baudrate	Check_sum

Baudrate: 雷达实际配置成的串口波特率。说明: 可配置的波特率范围[9600,921600]。

举例:

9600 [5A 08 06 80 25 00 00 00] 19200[5A 08 06 00 4B 00 00 00]

38400[5A 08 06 00 96 00 00 00]

57600[5A 08 06 00 E1 00 00 00]

115200 [5A 08 06 00 C2 01 00 00]

230400 [5A 08 06 00 84 03 00 00]

460800 [5A 08 06 00 08 07 00 00]

921600 [5A 08 06 00 10 0E 00 00]

7. 输出开关 ID_OUTPUT_EN=0x07

支持此协议的最低固件版本: V0.0.5。

下行

字节	0	1	2	3	Len-1
描述	Head(0x5A)	Len	ID	Enable	Check_sum
默认值				1	

Enable: 0 (输出不使能), 1 (输出使能)。上行

字节	0	1	2	3	Len-1
描述	Head(0x5A)	Len	ID	Enable	Check_sum

举例:

使能输出 [5A 05 07 01 00] 关闭输出

[5A 05 07 00 00]

8. 校验和开关 ID_FRAME_CHECKSUM_EN=0x08

支持此协议的最低固件版本: V0.0.5。下

上行数据帧中仍包含正确的校验和字节。

行

字节	0	1	2	3	Len-1
描述	Head(0x5A)	Len	ID	Enable	Check_sum
默认值				0	

Enable: 0 (校验和不使能), 1 (校验和使能)。说明:校验和不使能时,雷达不对下行数据帧的校验和做检查,

上行

字节	0	1	2	3	Len-1
描述	Head(0x5A)	Len	ID	Enable	Check_sum

举例:

开启校验和 [5A 05 08 01 00] 关闭校验和[5A

05 08 00 67]

9. 修改 I2C 从机地址 ID_I2C_SLAVE_ADDR=0x0B

支持此协议的最低固件版本: V1.0.0。

下行

字节	0	1	2	3	Len-1
描述	Head(0x5A)	Len	ID	I2c_slave_addr	Check_sum

I2c_slave_addr: 范围[0x08, 0x77];

上行

字节	0	1	2	3	Len-1
描述	Head(0x5A)	Len	ID	I2c_slave_addr	Check_sum

举例:

修改为 0x20 [5A 05 0B 20 00]

10. 恢复出厂设置 ID_RESTORE_DEFAULT=0x10

支持此协议的最低固件版本: V0.0.5。下

行

字节	0	1	2	Len-1
描述	Head(0x5A)	Len	ID	Check_sum

上行

字节	0	1	2	3	Len-1
描述	Head(0x5A)	Len	ID	Status	Check_sum

Status: 0 (成功) 非 0 (失败)。

举例:

指令 [5A 04 10 00]

11. 保存当前设置 ID_SAVE_SETTINGS=0x11

支持此协议的最低固件版本: V0.0.5。下

行

字节	0	1	2	Len-1
描述	Head(0x5A)	Len	ID	Check_sum

上行

字节	0	1	2	3	Len-1
描述	Head(0x5A)	Len	ID	Status	Check_sum

Status: 0 (成功) 非 0 (失败)。

举例:

指令 [5A 04 11 00]

12. 读取生产条码 ID_READ_MANU_BIN=0x12

支持此协议的最低固件版本: V0.0.5。下

行

字节	0	1	2	Len-1
描述	Head(0x5A)	Len	ID	Check_sum

上行

字节	0	1	2	3-16	Len-1
描述	Head(0x5A)	Len	ID	Bin	Check_sum

Bin: 14 字节的生产条码。举例:

指令 [5A 04 12 00]

反馈: U0900018010001, 则第3到16字节依次为:

 $0x55\ 0x30\ 0x39\ 0x30\ 0x300x30\ 0x31\ 0x38\ 0x30\ 0x31\ 0x30\ 0x300x30\ 0x31$

13. 获取完整版本号 ID_GET_FULL_VERSION=0x14

支持此协议的最低固件版本: V0.0.5。下

行

字节	0	1	2	Len-1
描述	Head(0x5A)	Len	ID	Check_sum

上行

字节	0	1	2	3-10	11	12-19	20	21-22	23	24-25	26	27-28	Len-1
描述	Head(0x5A)	Len	ID	项目名称 (右对 齐)		分支名称 (右对 齐)		主版本号		次版 本号		修正版本号	Check_ sum

举例:

指令 [5A 04 14 00]

14. 设置 AMP 踢点阈值 ID_AMP_THRESHOLD=0x22

支持此协议的最低固件版本: V0.0.5。下

行

字节	0	1	2	3	4-5	Len-1
描述	Head(0x5A)	Len	ID	Amp_Threshold	Dummy_Dist	Check_sum
默认值				10	0	

Amp_Threshold: AMP 踢点阈值为 Amp_Threshold * 10, 低于该阈值, 距离值输出为 Dummy_Dist。

Dummy_Dist: AMP 低于踢点阈值时输出的距离值,单位 cm。上

行

字节	0	1	2	3	4-5	Len-1
描述	Head(0x5A)	Len	ID	Amp_Threshold	Dummy_Dist	Check_sum

举例:

Amp 阈值为 300, Amp<300 时输出 500cm[5A 07 22 1E F4 01 00]

15. 时间戳同步 ID_TIMESTAMP_SYNC =0x31

支持此协议的最低固件版本: V0.0.5。下

行

字节	0	1	2	3-6	Len-1
描述	Head(0x5A)	Len	ID	Std	Check_sum
默认值				0	

Std: 指定的当前时间戳举例:

指定当前时间为 1000ms [5A 08 31 E8 03 00 00 00]

16. 低功耗模式 ID_LOW_CONSUMPTION=0x35

支持此协议的最低固件版本: V0.0.5。

下行

字节	0	1	2	3-4	Len-1
描述	Head(0x5A)	Len	ID	Sample_rate	Check_sum
默认值				0	

Sample_rate: 工作频率, 0 (不使能低功耗模式), >0 (使能低功耗模式)。

上行

字节	0	1	2	3-4	Len-1
描述	Head(0x5A)	Len	ID	Sample_rate	Check_sum

举例:

低功耗模式 10Hz 输出 [5A 06 35 0A 00 00]

17. 设置距离限制 ID_DIST_LIMIT=0x3A

支持此协议的最低固件版本: V0.0.5。

下行

字节	0	1	2	3-4	5-6	7	Len-1
描述	Head(0x5A)	Len	ID	Dist_min	Dist_max	Silence	Check_sum
默认值				0	800	0	

Dist_min:输出的最小距离值,单位 cm

Dist max: 输出的最大距离值, 单位 cm

Silence: 0 (超出距离限制后,输出限制端点值),1 (超出距离限制后不输出)上行

字节	0	1	2	3-4	5-6	7	Len-1
描述	Head(0x5A)	Len	ID	Dist_min	Dist_max	Silence	Check_sum

举例:最小输出距离 20cm,最大输出距离 500cm,超出距离限制后,输出限制端点值[5A 093A14 00 F4

0100 00]

18. 设置开关量输出模式 ID ON OFF MODE=0x3B

支持此协议的最低固件版本: V1.0.0。

下行

字节	0	1	2	3	4-5	6-7	8-9	10-11	Len-1
描述	Head(0x5A)	Len	ID	Mode	Dist	Zone	Delay1	Delay2	Check_sum
默认值				0	0	0	0	0	

Mode: 0 (数据输出模式), 1 (开关量模式, 近高远低), 2 (开关量模式, 近低远高)

Dist: 临界值, 滞回区间的近端点值, 单位 cm

Zone: 滞回区间大小, 单位 cm。

Delay1: 防抖延时时间 1,单位 ms。当距离由远变近超过近端阈值,且保持 Delay1 ms 一直小于近端阈值,才切换电平。

Delay2: 防抖延时时间 2,单位 ms。当距离由近变远超过远端阈值,且保持 Delay2 ms 一直大于远端阈值,才切换电平。举例:

近高远低,Dist=200cm,Zone=10cm,Delay1=Delay2=1000ms[5A 0D 3B 01 CB 00 0A 00 E8 03 E8 03 00]

19. 设置低采样率模式 ID LOW SAMPLE RATE=0x3E

支持此协议的最低固件版本: V0.0.5。下

行

字节	0	1	2	3-6	7-10	Len-1
描述	Head(0x5A)	Len	ID	Output_period_s	One_shot_frames	Check_sum
默认值				0	0	

Output_period_s: 大于 0 时有效,针对输出周期大于 1s 的应用,即帧率小于 1 的应用。

One_shot_frames: 与 sample_freq、output_period_s 结合使用, 当 output_period_s>0 时有效, 每 output_period_s 秒开启一次雷达,统计 one_shot_frames 帧结果后,取均值输出。上行

字节	0	1	2	3-6	7-10	Len-1
•						

描述	Head(0x5A)	Len	ID	Output_period_s	One_shot_frames	Check_sum
----	------------	-----	----	-----------------	-----------------	-----------

举例:

300s 测距一次,每次测量 1 秒。

可以设置 sample_freq=1, output_period_s=300, one_shot_frames=1[5A 06 03 01 00 00] [5A 0C 3E 2C 01 00 00 01 00 00 00]

20. 读取指定的雷达配置 ID_GET_CONFIG_PARA=0x3F

支持此协议的最低固件版本: V0.0.5。下

行

字节	0	1	2	3	Len-1
描述	Head(0x5A)	Len	ID	Id	Check_sum

Id:对应此文档 ID 定义。

上行:相应 ID 指令帧的上行格式。举例:

读取输出频率 [5A 05 3F 03 00]

附录三 I2C 寄存器列表

Address	R/W	Name	Initial	Description
			Value	
0x00	R	DIST_LOW		cm
0x01	R	DIST_HIGH		
0x02	R	AMP_LOW		
0x03	R	AMP_HIGH		
0x04	R	TEMP_LOW		0.01 摄氏度
0x05	R	TEMP_HIGH		

0x06	R	TICK_LOW		时间戳
0x07	R	TICK_HIGH		
0x08	R	ERROR_LOW		错误状态码
0x09	R	ERROR_HIGH		
0x0A	R	VERSION_REVISION		修订版本
0x0B	R	VERSION_MINOR		次版本
0x0C	R	VERSION_MAJOR		主版本
0x0D- 0x0F				保留
0x10- 0x1D	R	SN		生产编码,ASCII 码,14 字节, 0x10 存放第一个字节
0x1E- 0x1F				保留
0x20	W	SAVE		写 0x01: 保存当前寄存器值
0x21	W	SHUTDOWN/REBOOT		写 0x02: 重启
0x22	W/R	SLAVE_ADDR	0x10	范围: [0x08, 0x77]
0x23	W/R	MODE	0x00	0x00: 连续工作模式
				0x01: 指令触发模式
0x24	W	TRIG_ONE_SHOT		0x01: 触发一次测距,仅指令触发模式下有效
0x25	W/R	ENABLE	0x00	0x00: 雷达开启
				0x01: 雷达关闭

	1			T T
0x26	W/R	FPS_LOW	0x64	帧率
0x27	W/R	FPS_HIGH	0x00	
0x28	W/R	LOW_POWER	0x00	0x00: 标准模式
				0x01: 低功耗模式
0x29	w	RESTORE_FACTORY_DEFAULTS		写 0x01:恢复出厂寄存器值
0x2A	W/R	AMP_THR_LOW	0x64	AMP 阈值,AMP 低于阈值后,距
				离固定为 DUMMY_DIST
0x2B	W/R	AMP_THR_HIGH	0x00	
0x2C	W/R	DUMMY_DIST_LOW	0x00	当 AMP 低于 AMP_THR 输出的
				距离值,cm
0x2D	W/R	DUMMY_DIST_HIGH	0x00	
0x2E	W/R	MIN_DIST_LOW	0x00	最小距离值,cm,
				DUMMY_DIST 不受该限制
0x2F	W/R	MIN_DIST_HIGH	0x00	
0x30	W/R	MAX_DIST_LOW	0x20	最大距离值,cm,
				DUMMY_DIST 不受该限制
0x31	W/R	MAX_DIST_HIGH	0x03	
0x32-				保留
0x33				小山
0x34-				保留
0x3F				